Haca 1 - meaning and definition. What is Haca 1
Diclib.com
ChatGPT AI Dictionary
Enter a word or phrase in any language 👆
Language:     

Translation and analysis of words by ChatGPT artificial intelligence

On this page you can get a detailed analysis of a word or phrase, produced by the best artificial intelligence technology to date:

  • how the word is used
  • frequency of use
  • it is used more often in oral or written speech
  • word translation options
  • usage examples (several phrases with translation)
  • etymology

What (who) is Haca 1 - definition

SÉRIE DIVERGENTE
1 + 1 + 1 + 1 + · · ·; 1 + 1 + 1 + 1 + …
  • acessodata=30 de janeiro de 2014}}</ref>

Interleucina 1         
  • IL-1 alfa
IL-1
O termo interleucinas origina-se do grego entre células brancas. São moléculas proteicas, glicosiladas ou não, que enviam diversos sinais estimulatórios, modulatórios ou mesmo inibitórios para as diferentes células do sistema imune.
ALCO S-1         
ALCo S-1; S-1
A ALCO S-1 foi uma manobreira Diesel Eletrica de 660Hp produzida pela ALCO e sua subsidiária canadense Montreal Locomotive Works (MLW)
Fiat 1         
1 Fiacre
Fiat 1 ou Fiat 1 Fiacre foi um automóvel produzido pela Fiat de 1908 a 1910. A capacidade de seu motor era de 2.

Wikipedia

1 + 1 + 1 + 1 + ⋯

Em matemática, 1 + 1 + 1 + 1 + · · ·, também escrita como n = 1 n 0 {\displaystyle \sum _{n=1}^{\infty }n^{0}} , n = 1 1 n {\displaystyle \sum _{n=1}^{\infty }1^{n}} , ou simplesmente n = 1 1 {\displaystyle \sum _{n=1}^{\infty }1} , é uma série divergente, significando que sua sequência de somas parciais não converge para um limite dentro dos números reais. A sequência 1n pode ser pensada como uma série geométrica com a razão igual a 1. Diferente de outras séries geométricas com uma razão racional (exceto -1), ela não converge nem dentro dos números reais e nem dentro dos número p-ádicos para algum p. No contexto da reta de números reais estendida,

já que a sua sequência de somas parciais cresce monotonicamente sem limite.

Onde a soma de n0 ocorre em aplicações físicas, às vezes ela pode ser interpretada através da regularização da função zeta. Ela é o valor da função zeta de Riemann em s=0

No entanto, as duas fórmulas dadas acima não são válidas em zero, sendo então necessário utilizar a extensão analítica das funções zetas de Riemann,Usando isso obtêm-se (dado que Γ ( 1 ) = 1 {\displaystyle \Gamma (1)=1} ), ζ ( 0 ) = 1 π lim s 0   sin ( π s 2 )   ζ ( 1 s ) = 1 π lim s 0   ( π s 2 π 3 s 3 48 + . . . )   ( 1 s + . . . ) = 1 2 {\displaystyle \zeta (0)={\frac {1}{\pi }}\lim _{s\rightarrow 0}\ \sin \left({\frac {\pi s}{2}}\right)\ \zeta (1-s)={\frac {1}{\pi }}\lim _{s\rightarrow 0}\ \left({\frac {\pi s}{2}}-{\frac {\pi ^{3}s^{3}}{48}}+...\right)\ \left(-{\frac {1}{s}}+...\right)=-{\frac {1}{2}}\!}

em que a expansão em série de potências para ζ(s) em s = 1 é válida pois ζ(s) tem um polo simples de resíduo 1 nesse ponto. Neste sentido, 1 + 1 + 1 + 1 + · · · = ζ(0) = −12.

Emilio Elizalde apresenta uma anedota relacionada as atitudes frente as séries:

Em um curto período menor do que um ano, dois distintos físicos, A. Slavnov and F. Yndurain, deram um seminário em Barcelona, sobre diferentes assuntos. Foi memorável que, em ambas apresentações, em dado momento o orador falou a plateia essas palavras: 'Como todos sabem, 1 + 1 + 1 + · · · = −12'. Significando talvez: Se você não sabe isso, não faz sentido continuar ouvindo.